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Abstract 

The Standard Model of particle physics (SM) is a theoretical framework that integrates our current knowledge of the 

subatomic world and its fundamental interactions. A key program built in the structure of the SM is the 

Renormalization Group (RG), whose function is to preserve self-consistency and describe how parameters of the 

theory evolve with the energy scale. Despite being overwhelmingly supported by experimental data, the SM has 

many puzzling aspects, such as the large number of parameters, a triplication of chiral families and the existence of 

three gauge interactions. In contrast with the majority of mainstream proposals advanced over the years, the basic 

premise of our study is that a satisfactory resolution of challenges confronting the SM requires further advancing the 

RG program. In particular, understanding the nonlinear dynamics of RG equations and the unavoidable transition 

from smooth to fractal dimensionality of space-time are critically important for the success of this endeavor. Here 

we show how the onset of fractal space-time near or above the electroweak scale is likely to settle at least some of 

these challenges.         

Key words: Standard Model, Quantum Field Theory, Renormalization Group, Landau-Ginzburg-Wilson model, 

fractal space-time, scale invariance, continuous dimension. 

1. Introduction  

As coherent synthesis of Quantum Mechanics and Special Relativity, Quantum Field Theory 

(QFT) provides a compelling description of phenomena up to the energy scales probed by 

present accelerators. Nevertheless, there are plausible reasons to suspect that QFT breaks down 

at some high energy scale ( UV
 ), above which it needs to be replaced by a more fundamental 
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theory. Although there is no consensus among theorists on this issue, the underlying reasons may 

be summarized as follows: 

a) New interactions, hidden symmetries or any other exotic extensions of QFT could likely 

unfold near
UV

 ,  

b) Reconciling classical gravity with QFT appears to be an insurmountable challenge. A major 

obstacle is that perturbative quantization of classical gravity cannot be extrapolated at energies 

close to the Planck scale, ( )
UV Pl

O M  . As a result, the theory is said to be “non-

renormalizable”, meaning that it lacks any predictive power at scales comparable with 
UV

 . A 

number of non-perturbative models of quantum gravity have been proposed as alternative 

solutions, but it is presently unclear if they yield a truly consistent integration scheme of General 

Relativity and QFT [1, 2].      

c) The current accelerator technology probes energies moderately above the range defining the 

Standard Model (SM) of particle physics (
SM

 = O (TeV)). The prevalent view is that 
Pl

M  is the 

only genuine scale in QFT and stems from the assumption that no dramatic change in physics 

develops between 
SM

  and 
Pl

M . But if this assumption is true, there is at present no compelling 

explanation for the mass hierarchy, stemming from the observation that fermion masses are 

scattered over thirteen orders of magnitude and are confined around 
SM

 << 
Pl

M . In addition, 

quantum corrections applied to the Higgs vacuum can shift the Higgs mass close to 
Pl

M , leading 

to the so-called “fine-tuning problem” [3].   

d) The dynamics of QFT may undergo transition to classical behavior as a result of decoherence 

[4] or become unstable near or below
UV

 . The instability can arise from unbalanced quantum 
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corrections or from the transition to chaos in nonlinear evolution of interacting fields [5, 6, 39, 

41]. 

Due to its limitations in dealing with phenomena on scales nearing 
UV

 , the conventional 

interpretation of QFT is that it represents an “effective” field theory (EFT), which is likely to be 

amended by new physics emerging above
UV

 . EFT describes phenomena occurring exclusively 

on low-energy scales 
SM

 << 
UV

 , in the same way the continuum theory of elasticity describes 

the long wavelength excitations of a crystal [7, 8]. In the case of a crystal, the continuum theory 

breaks down at the scale of the lattice spacing. Likewise, EFT breaks down as the energy scale is 

ramped up close to
UV

 .  

It is instructive to briefly review at this point two examples of successful EFT’s: 

1) In the Wilson treatment of critical phenomena using the Renormalization Group program 

(RG) [7, 9, 52], quantum fields present in the theory ( )  depend on the running scale   and 

are separated into two components 

 ( ) :l 0  ≤    ≤ UV

s


 (1.1) 

 ( ) :s UV

s


 ≤   ≤ 

UV
  (1.2) 

Here, the parameter “ s ” is an arbitrary scaling factor ( s  > 1), ( )l and ( )s  are the long and 

short wavelength excitations and correspond, respectively, to the light and heavy particles carried 

by  . Starting with an EFT defined at UV
 , the core idea of Wilson’s approach is to integrate 

out all heavy particles contained in the “momentum shell” (1.1, 1.2) and form a new EFT with 
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the remaining fields below the separation scale UV

s


. Since   is considered a running 

parameter, iterating this process yields a flow of EFT’s from 
UV

  toward their low-energy limit. 

It is customary to refer to this iterative process as a RG flow (or RG trajectory). A key property 

of local EFT’s is that the low-energy endpoint of the RG flow must describe phenomena that are 

fully decoupled from physical processes occurring near the high-energy limit
UV

 . This property 

conveys the basic idea behind the concept of scale invariance [7, 9, 52]. 

2) The second example is the SM itself, a robust EFT that has been in place for more than three 

decades. It includes the (3) (2) (1)SU SU U   gauge model of strong and electroweak 

interactions along with the Higgs mechanism that spontaneously breaks the electroweak 

(2) (1)SU U  group down to the (1)U  group of electrodynamics. The SM has been confirmed 

countless times in all accelerator experiments, including the latest runs of the Large Hadron 

Collider (LHC). Despite this convincing body of evidence, the SM is confronted with many 

unsolved challenges [10-12]. Over the years, this has led to an overflow of theoretical extensions 

targeting the physics beyond the SM scale ( m >
SM

 ). The majority of these proposals center on 

solving some unsatisfactory aspects of the theory while introducing new unknowns. Experiments 

are expected to provide guidance in pointing to the correct theory yet, so far, LHC searches show 

no credible hint for physics beyond the SM up to a center-of-mass energy of s  =  8 TeV [13]. 

These results, albeit entirely preliminary, suggest two possible scenarios, namely: 

a) SM fields are either decoupled or ultra-weakly coupled to new dynamic structures emerging in 

the low or intermediate TeV scale, 
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b) There is an undiscovered and possibly non-trivial connection between the SM and TeV 

phenomena.  

More importantly, this discussion raises a key question: What should be the principles guiding 

model-building efforts beyond the SM? In contrast with many mainstream proposals on how to 

tackle this question, our basic premise is that moving beyond the SM requires further advancing 

the RG program. As we shall argue below, understanding the nonlinear dynamics of RG flow 

equations and the transition from smooth to fractal dimensionality of space-time are essential 

steps for the success of this endeavor.  

The article is organized in the following way: section two surveys the principles of the RG 

program, with emphasis on phase space trajectories and their fixed points. The idea of 

dimensional regularization and its implications on the emergence of fractal space-time in QFT 

form the topic of section three. Section four and five describe the asymptotic approach to scale 

invariance of RG trajectories and presents a natural solution for the so-called mass hierarchy 

problem of the SM. The emergence of a Higgs-like resonance as Bose-Einstein condensate on 

fractal space-time is introduced in section six. Concluding remarks are gathered in section seven. 

To facilitate reading, frequently used text abbreviations are also listed at the end of the article. 

This work represents a development of ideas published by the author in [5-6, 14-22, 35, 46]. To 

make its content fully transparent, we have opted for minimal mathematics but adequate clarity 

and level of detail. Since many of these ideas are under development, concurrent analysis is 

needed to confirm, expand or falsify our provisional findings. 
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Before going into details, it is essential to point out that in our work the terms “scale invariance” 

and “conformal invariance” are considered identical, although they are not synonymous (a field 

theory can be scale invariant without being conformal invariant [23, 38]).  

2. Renormalization Group trajectories 

We begin by briefly reviewing the conventional construction of Lagrangian field theory. 

Consider a field theory whose action in D - dimensional space-time is given by 

 [ , ] [ , ] D
S L d x      (2.1) 

 [ , ] [ , ]L u P       (2.2) 

The theory is fully specified by three primary inputs, namely: a) the field content of the 

Lagrangian (2.2),  b) the set of symmetry constraints imposed on (2.2) and c) the dimension of 

space-time ( D ). The basis functionals [ , ]P    with 1,2,...N  represent a sum of local 

products of fields  , their conjugates   and/or their derivatives and u  are a set of coupling 

parameters. Here, coupling parameters mean the coefficients describing interaction strengths as 

well as particle masses. The summation convention is assumed throughout. 

As alluded to in the first section, the RG program posits that the description of the physics 

embodied in (1.1) can be done in terms of a family of “effective actions”, each valid at a certain 

energy scale  [24]. A key concept of this program is the RG flow, whose role is to define how 

effective formulations of the theory evolve with  . According to this program, parameters u  

run with   following the general system of non-autonomous equations of order “ n ” [7, 24] 
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 1 2

( )
( , ,..., ,..., , )

N

u
u u u u  

  
   (2.3) 

Using the standard field-theoretic jargon, ( )u 
 
are called “bare” parameters of the theory 

whereas (0)u  are referred to as the “renormalized” parameters. In this picture, the flow (2.3) 

describes the evolution of u  from the ultraviolet region of arbitrarily large energies (UV) to the 

infrared limit of low energies (IR). If d  represents the canonical mass dimension of u , the 

substitution 

 
d

g u   (2.4) 

transforms (2.3) into a coupled system of autonomous differential equations of order “ n ” 

relating dimensionless couplings g , that is, 

 
1 2

( )
( , ,..., ,..., )

N

g
g g g g  

 
   (2.5) 

A fixed point (FP) is invariant under (2.5) and corresponds to the stationary condition 

 
* *

1 2( , ,..., ) ( ) 0
N

g g g g      (2.6) 

By definition, integral curves along the vector field (2.5) are called RG trajectories 

parameterized by the running scale  . The goal of the RG theory consists in constructing 

trajectories which do not develop divergences in either UV or IR limits. Each such trajectory 

defines a possible field theory characterized by the continuous mapping 

 ( ) [ ( ), ( )]g S        (2.7) 
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RG trajectories encode in a universal way the natural flow of (2.1) towards FP’s.  It follows that, 

since FP’s are independent from  , (2.7) unveils the asymptotic approach of field theories to 

scale invariance. A relativistic QFT that is scale invariant and contains massless particles is 

necessarily a free theory [25]. 

The fixed-point structure of quantum field theories is typically difficult to extract analytically. In 

particular, Feynman diagrams fail in the neighborhood of any strong coupling point ( g
 >> 0 ) 

and the behavior of the theory is ill-defined near such points. By contrast, perturbation methods 

are applicable near any trivial FP ( 0g
  ) and (2.5) can be evaluated there using the series 

expansion 

 
( )

....ij ijk

i j i j k

g
a g g b g g g  

 
     (2.8) 

It is customary to assume that the perturbative flow (2.8) of typical QFT’s evolves toward 

isolated sets of stable FP’s [7, 15]. A typical example is the strong FP of Quantum 

Chromodynamics (QCD), which characterizes the passage to asymptotic freedom of quarks and 

gluons in the UV limit. Another example is the IR “conformal” FP describing the approach to 

scale invariance in the low-energy limit of QFT.  But in addition to FP’s, RG flows can display 

limit cycles (isolated closed trajectories) and chaotic behavior. If either (2.5) or (2.8) are 

regarded as nonlinear systems of coupled differential equations, the behavior of these systems is 

characterized by sensitivity to initial conditions, the loss of stability and the emergence of local 

or global bifurcations [26-30, 34-35, 38, 56]. 

At first sight, this observation appears to stand in conflict with one foundational postulates of 

relativistic field theory, the cluster decomposition principle. This principle asserts that local 
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processes in any relativistic field theory must be insensitive to distant environment in space-time 

or energy scale and guarantees the factorization of the S-matrix of scattering amplitudes [7]. A 

direct consequence of this principle is that transitions amplitudes measured in the laboratory 

must be insensitive to the physics of short-distance scales. Rather than contradicting the 

clustering principle, the nonlinear behavior of the RG flow imparts a new twist to it. As we show 

below, abandoning the notion that the RG flow typically evolves towards isolated and stable 

FP’s, is likely to bring closure to some of the open challenges facing the SM.    

3. Dimensional regularization and the onset of fractal space-time 

The previous section has touched upon the fundamentals of Wilson’s RG program. Closely 

related to this program in QFT is the concept of dimensional regularization, which we now 

briefly outline. 

A well-known difficulty of QFT is that perturbative calculations using momentum integrals do 

not converge [7, 31]. The root cause is that integrands fall off too slowly at large momenta. 

Infinities arising from the short-wavelength region of the integrals are called ultraviolet (UV) 

divergences. For massive fields, this type of singular behavior in the UV limit is the only 

anomaly of such integrals. In the zero-mass limit, further singularities show up at small momenta 

and are called infrared (IR) divergences. The zero-mass limit is relevant to critical behavior in 

statistical and condensed matter physics, as it relates to phenomena that exhibit unbounded 

correlation length and scale invariance.  

Renormalization is a powerful technique for removing both UV and IR divergences and it 

consists in a two-step program: regularization and subtraction. One first controls the divergence 
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present in momentum integrals by inserting a suitable regulator, and then brings in a set of 

counter-terms to cancel out the divergence.  Momentum integrals in QFT have the generic form  

 4

0
( )I d q F q

   (3.1)                              

Two regularization techniques are frequently employed to manage (3.1), namely “momentum 

cutoff” and “dimensional regularization”. When the momentum cutoff scheme is applied for 

regularization in the UV region, the upper limit of (3.1) is replaced by a finite cutoff 
UV

 , 

 
4

0
( )

UV

UV
I I d qF q


    (3.2) 

Explicit calculation of the convergent integral (3.2) amounts to a sum of three polynomial terms  

 1( ) ( )
UV UV

UV

I A B C       (3.3)                                 

Dimensional regularization proceeds instead by shifting the momentum integral (3.1) from a 

four-dimensional space to a continuous D - dimensional space 

 
0

( )D

D
I I d qF q

    (3.4) 

Introducing the dimensional parameter 4 D    leads to 

 1'( ) ' '( )
D

I I A B C       (3.5) 

Historically, the idea of continuous dimension was introduced by Wilson and Fisher [52] and 

initially used to compute physical quantities of interest as expansions in powers of  . Later on, 



11 

 

Veltman and ’t Hooft have shown how this idea can be incorporated in QFT and developed into 

a reliable renormalization technique [31].  

Regularization techniques are not independent from each other. For example, the connection 

between dimensional and cutoff regularizations is given by [6, 32]     

 
2

2

2 5
log log 4

6

UV
E  

      (3.7) 

We find it convenient to present (3.7) is a slightly different form, that is, 

   ~ 
2

2

1

log( )UV
  (3.8) 

It is apparent from (3.8) that the four-dimensional space-time is recovered in either one of these 

limits: 

a) UV
   and 0 < << UV

 , 

b) UV
   and 0 .  

However, both limits are in conflict with our current understanding of the far UV and the far IR 

boundaries of field theory. Theory and experimental observations alike tell us that the notions of 

infinite or zero energy are, strictly speaking, meaningless. This is to say that either infinite 

energies (point-like objects) or zero energy (infinite distance scales) lead to divergences whose 

removal requires the machinery of the RG program. Indeed, there is always a finite cutoff at both 

ends of either energy or energy density scale (far UV = Planck scale, far IR = finite radius of the 

observable Universe or the non-vanishing energy density of the vacuum set by cosmological 
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constant). It follows from these considerations that the limit 0   works as a highly accurate 

approximation and realistic models near or beyond the SM scale must account for space-time 

geometries having continuous dimensionality. Fractal space-time defined by the continuous 

dimension 4D    asymptotically approaches ordinary space-time near or below the SM scale, 

that is, for   ≤ 
SM

 .   

4. The asymptotic approach to scale invariance 

Section two has surveyed how RG trajectories describe the asymptotic behavior of field theory 

and the universal approach to scale invariance. One finds it quite natural to also demand that RG 

trajectories themselves maintain scale invariance as they evolve toward FP’s. 

To clarify this point, let us return to the system of differential equations (2.5). Taking advantage 

of the large numerical disparity between   and 
UV

 , we may use (3.8) to rewrite (2.5) as 

 
( )

[log( )]
UV

g 
 

 ~ 
( )

( )
UV

g 
 

 1 2

( )
( , ,..., ,..., )

N

g
g g g g  

 
   (4.1) 

or 

 1 2

( ) ( )
( , ) ( , ,..., ,..., ) 0

N

g g
F g g g g g   

   
      (4.2) 

As briefly alluded in section two, realistic RG flows evolve in the presence of weak 

perturbations which affect stability of their FP’s [28]. The minimal way to include the effect of 

weak perturbations of the linear form ( )   ~   is to modify (4.2) as follows 
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 ( , ) 0
g

F g  
   [ ( ), , ]

g
F g   


  ~ ( , , ) 0

g
F g  

   (4.3) 

By definition, (4.3) represents a system of autonomous differential equations if it remains 

unchanged under the substitutions c    and ( ) ( )g g   , where c  is a fixed but 

arbitrary parameter and 1,2,..., N  . Also by definition, (4.3) represents a system of scale 

invariant differential equations if it remains unchanged under the substitutions    and 

( ) ( )g g    , where   is a fixed but arbitrary parameter. It is always possible to 

transform scale invariant equations into autonomous equations [33]. In short, 

 
( )

( , , ) 0 [ , ( ), ] 0
g g

F c g F g  
    

       (4.4) 

It can be shown that, any system of ordinary differential equations (4.3) that is scale invariant 

and whose associated autonomous equation possesses a FP, has a power-series solution in the 

basin of attraction of this FP. This power-series solution can be presented as [33]  

 
,( ) ( )i

h

i
g d e       ~ ( )O   (4.5) 

Here, d  and ,ie  are finite numerical coefficients and the index 1,2,....,i M , with M N n  . 

For i
h  > 0 , all couplings and masses vanish in the four-dimensional space-time limit ( 0  ). 

This confirms what we concluded in section two, namely that massless particles in a scale-

invariant QFT residing at the trivial FP (
* (0) 0g  ) are necessarily free. [25]. But more 

importantly, what (4.5) also reveals is that set of couplings ( )g   assume non-vanishing values 

on fractal space-time, that is, on a space-time with continuous dimensionality ( 4D    < 4 ). 
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Building on this finding, next section recovers the pattern of massive SM particles and 

interaction couplings from the transition to chaos of RG equations (4.3).  

In closing this section we note that this conclusion is consistent with the Landau-Ginzburg-

Wilson (LGW) theory of critical behavior for the so-called 4  model. This model describes the 

attributes of many statistical systems and field theories approaching criticality in the IR limit. An 

essential feature of the LGW theory is that the trivial FP 
* 0g   is unstable and it cannot 

characterize critical behavior in less than four dimensions ( D < 4). There is another non-trivial 

fixed point, referred to as the Wilson-Fisher FP, defined on fractal space-time of arbitrary 

dimension 4D   . The Wilson-Fisher point accounts for the onset of critical behavior and 

scale invariance in less than four dimensions [9]. One is necessarily led to conclude from this 

analysis that the couplings of any interacting QFT arise from the fractional dimension of space-

time   ≠ 0, as deviations from trivial scale invariance at 0  [5-6]. 

5. Toward a solution for the mass hierarchy problem    

Let us now return to (4.3) and (4.4). Under the reasonable assumptions that the solution (4.5) 

drifts toward a limit cycle 
0 ( )g   which becomes unstable near 0  , it can be shown that (4.3) 

and (4.4) undergo transition to chaos driven by the dimensional parameter 0   [14-15, 35]. 

The first stage of this transition is a Feigenbaum cascade of period-doubling bifurcations of

0 ( )g  . Numerous examples of this scenario show that the sequence of critical values 

, 1,2,...
n

n   driving the transition to chaos in (4.3) and (4.4) satisfies the geometric progression 

[36-37]  

 0
n n
      ~ 

n

n
k  

 (5.1) 
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Here, 1n   is the index counting the number of cycles created through the period-doubling 

cascade,   is the rate of convergence and 
n

k  is a coefficient that becomes asymptotically 

independent of n  as n . Period-doubling cycles are characterized by 2p
n  , for p  >> 1. 

Substituting (5.1) in (4.5) yields the following ladder-like progression of critical couplings 

 
* ( )g p  ~ 

2( )
p 
 (5.2) 

It can be shown that (5.2) recovers the full mass and flavor content of the SM, including 

neutrinos, together with the coupling strengths of gauge interactions [6, 15, 35]. Specifically,  

 The trivial FP of the RG flow consists of the massless photon ( ) and the massless UV 

gluon ( g ). 

 The non-trivial FP of the RG flow is degenerate and consists of massive quarks ( q ), 

massive charged leptons and their neutrinos ( ,l  ) and massive EW bosons ( ,W Z ). 

 Gauge interactions develop near the non-trivial FP and include electrodynamics ( e ), the 

weak interaction (
W

g
 ) and the strong interaction (

s
g
 ). 

It is instructive to note that a similar treatment applied to QCD is able to retrieve the spectrum of 

hadron masses [16, 39]. Along the same lines of thought, it can be also shown that the number of 

fermion generations follows from the stability analysis of RG trajectories [19]. These findings 

reinforce the point made earlier about the many unexplored implications of the RG program on 

the SM physics.  
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6. Higgs-like scalar as Bose-Einstein condensate on fractal space-time 

It is widely accepted that the SM embodies our current knowledge of the strong and EW 

interactions. SM is a self-contained framework of remarkable predictive power whose 

fundamental degrees of freedom are the spin one-half quarks and leptons, the spin one gauge 

bosons and the spin-zero Higgs doublet. Symmetry constraints play a key role in fixing the 

dynamical structure of SM, which exhibits invariance under the combined 

(3) (2) (1)
L Y EM

SU SU U   gauge group. Despite being confirmed in many independent tests, SM 

is an incomplete framework as it leaves many basic questions unanswered [55]. The reported 

narrow resonance seen by the LHC, whose mass is centered on 126m   GeV, is strongly 

consistent with a CP even Higgs-like boson [10-11]. However, at the time of writing, no 

consensus has yet been reached on two important points, namely, a) that the Higgs-like boson is 

the simplest possible type predicted by the SM and b) that the Higgs mechanism based on the 

Weinberg-Salam potential is the actual source of EWSB [10, 54]. 

It was shown in [40] that the transition from order to chaos in classical and quantum systems of 

gauge and Higgs fields is prone to occur somewhere in the low to mid TeV scale. The inability 

of the Higgs vacuum to survive not too far above the LHC scale explains away the fine-tuning 

problem and signals the breakdown of the SM in this region [40]. The likely instability of the 

vacuum in the low to intermediate TeV scale brings up an intriguing speculation on the nature of 

the Higgs scalar. In particular, what we interpret as the Higgs scalar may actually be a Bose-

Einstein condensate of gauge fields on fractal space of dimension 4D   . The goal of this 

section is to elaborate on this idea. 
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First, recall that in relativistic QFT, pure scalar fields are a peculiar class of operators due to the 

following reasons [7, 42]: 

a) Since canonical mass dimension of fields is linearly dependent on their spin j , 

 1d j    (6.1) 

scalar fields have the minimal mass dimension, 1d  . 

b) Self-interacting scalars carry dimensionless coupling parameters in four-dimensional space-

time ( 0
u

d   ). As it is known, dimensionless couplings ensure consistency of quantum field 

theory, in particular compliance with conformal symmetry [42].   

c) Scalar fields do not carry any gauge charges (electric, weak hypercharge or color) and are free 

from chirality. 

d) The mapping theorem states that non-abelian gauge fields are indistinguishable from scalars in 

the infrared limit of field theory [43].  

Secondly, fractal space-time has the ability to confine quantum fields in a similar manner with 

the phenomenon of Anderson localization in condensed matter physics [18, 44, 45]. 

It follows from these considerations that scalars are the simplest embodiment of quantum fields. 

They are the most likely to form a Higgs-like condensate of gauge bosons on space-times 

endowed with low level fractionality (  << 1), that is,  
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0 01 [( ) ( )]

4C
W W Z g W W Z g                (6.2) 

As further explained in the Appendix, a remarkable feature of (6.2) is that it is a weakly coupled 

cluster of gauge fields having zero topological charge. Compliance with this requirement 

motivates the duplicate construction of (6.2), which contains individual WW, ZZ, photon and 

gluon doublets. Stated differently, (6.2) is the only inclusive combination of gauge field doublets 

that is free from all gauge and topological charges. Table 1 shows a comparative display of 

properties carried by the SM Higgs and the Higgs-like condensate.  

Scalar 

field 

Original 

form 
Composition  

Mass  

(GeV) 

Weak 

hypercharge 

Electric 

charge 
Color 

Topological 

charge 

SM Higgs 
0




     none ~ 126 
1

1

     
1

0

     0 0 

Higgs-like 

condensate C
  (6.2) ~ 126 0 0 0 0 

 

Tab. 1: SM Higgs doublet versus the Higgs-like condensate.  

7. Concluding remarks 

There is a vast body of proposed extensions of the SM offering solutions to its open questions or 

ideas on how to pursue model-building beyond its boundaries. Most proposals add new layers of 

complexity to the structure of the SM under the tacit assumption that these must come into play 

at large energy scales. The widespread belief is that new physics is prone to show up in the form 

of hidden particles or extended symmetry groups (examples include supersymmetric partners, 

sterile neutrinos, axions, Kaluza-Klein particles, WIMP’s, dark photons and so on [55]). 

By contrast, ideas developed here hint that an unexplored range of phenomena emerge from the 

nontrivial topology of space-time as the dimensional parameter 4 D    deviates slightly from 
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zero. Our study shows that nonlinear dynamics of RG equations, along with the unavoidable 

transition to fractal space-time above the EW scale, can settle some of the puzzles surrounding 

the SM. In particular, the low fractality texture of space-time naturally explains the mass 

hierarchy problem and suggests the emergence of the Higgs-like resonance as condensate of 

gauge bosons with a vanishing topological charge. In addition, as detailed in [5, 6, 51], the onset 

of space-time of low level fractality clarifies the fermion chirality and the violation of CP 

symmetry in weak interactions, the gauge hierarchy and cosmological constant problems as well 

as the possible content of non-baryonic dark matter. On this last point and by analogy with the 

Higgs-like structure (6.2), dark matter may surface as low-energy condensates of gauge bosons 

on fractal space-time that are likely to quickly annihilate into lepton-antilepton or quark-

antiquark pairs [6, 53]. 

The concept of fractal space-time helps also set the stage for a unified understanding of 

symmetries that operate within QFT. To this end, recall section four where autonomous 

equations were shown to be isomorphic with scale invariant equations (relation 4.4). This 

observation unveils a tantalizing connection between local symmetries of QFT and the 

dimensional parameter  . Local infinitesimal transformation in ordinary space-time ( 4D  ), 

including translations, rotations and boosts, may be viewed as local scale transformations 

characterized by infinitesimal changes of dimension, '  . The same applies to infinitesimal 

gauge transformations. It follows that all symmetry groups of QFT, including the Poincaré and 

gauge groups, may be deeply related to scale invariance on fractal space-time and the concept of 

continuous dimension [5-6, 20-21].  Furthermore, this connection brings to the fore two 

important insights:  

a) The concept of arbitrary spin may be seen as a topological manifestation of fractal space-time. 
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b) Classical gravitation defined in ordinary space-time is equivalent to field theory on fractal 

space-time. At least in principle, this observation opens up an unforeseen path to the long-sought 

unification of General Relativity and the physics of subatomic scales [5-6, 20-21].    

Needless to say, our tentative findings need to be further scrutinized and, most importantly, 

confronted with the experiment. Unfortunately, as of today, many aspects of the weak and strong 

interactions still elude us and the accelerator data do not provide clear guidance on where to 

focus the theory next. 

Although intriguing, follow up research is required to consolidate or falsify the body of ideas 

discussed above. For example, to be compelling, the postulated Higgs-like condensate (6.2) has 

to duplicate all production/decay cross sections and branching ratios predicted by the SM. It 

must also be consistent with preservation of unitarity in scattering of polarized WW bosons. One 

must also explain why the chaotic behavior of the RG flow is not directly observable in field 

theories describing separate gauge sectors of the SM, namely U(1), SU(2) and SU(3) [56].    

It is our hope that our work will inspire further developments on the subtle connection between 

the dynamics of the SM and the fractal structure of space-time above the EW scale.    

List of abbreviations used in the text: 

SM = Standard Model, EW = electroweak, EWSB = electroweak symmetry breaking, FP = fixed 

point, QFT = Quantum Field Theory, EFT = effective field theory, RG = Renormalization 

Group, IR = infrared, UV = ultraviolet, QG = Quantum Gravity, LGW = Landau-Ginzburg-

Wilson, QCD = Quantum Chromodynamics, C.C. = cosmological constant.  

Appendix: Conserved topological charge of field theory on fractal space-time: 
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It is known that scale invariance in classical field theory amounts to the condition [23]   

 0S
   (A.1) 

where the scale current is related to the energy-momentum tensor of the theory via 

 S x T
   (A.2) 

(A.1) and (A.2) imply that the trace of this tensor vanishes, that is, 

 0S T
      (A.3) 

The space-time continuum of both classical and quantum physics represents a smooth four-

dimensional manifold. Its geometrical properties are fully specified by the metric tensor, which 

also determines the geodesics of classical particles and light beams. Consider now an ordinary 

space-time with metric ( , ,..., )diag      and constrain all coordinates 0,1,2,3   to be 

slightly dependent on   as in  

 1( )x x
    (A.4) 

with   << 1. This space-time has low level fractionality and it can be referred to as a minimal 

fractal manifold (MFM). The measure of the MFM generalizes the familiar definition of classical 

and quantum physics and is given by [50] 

 4( ) v( , ) d x d x x   (A.5) 

 

0 1 2 3 4

4

( )
v( , )

( (1 ))

x x x x
x

 


    (A.6) 
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Likewise, the ordinary differential operator on the MFM is upgraded to  

 
1

D [ v( , ) ]
v( , )

x
x

      (A.7) 

Let us now introduce on the MFM a classical scalar field ( )x  with Lagrangian L and assume 

that the potential part of the Lagrangian is a polynomial of order r  having the form ( )V  ~ 0

r  . 

The energy-momentum tensor of the field can be presented as [50] 

 v( , )T x T   (A.8) 

where 0,1,2,3   and 

 D DT L        (A.9) 

The continuity equation reads 

 2
0 ( 1)v v

2

r
r r

T
         (A.10) 

For r ≠ 2, the energy-momentum tensor is not conserved due to the non-vanishing right-hand 

term. Adding to T
  a contribution whose four-divergence amounts to the right-hand term of 

(A.10),  

 2
0 ( 1)v v

2

r
r r

t
          (A.11) 

turns (A.10) into 
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 ( ) 0T t
            (A.12) 

Unlike T
 , the newly defined energy-momentum tensor 

  is conserving.  Its component t
  is 

clearly linked to the fractal geometry of the MFM via (A.6). As with any other constant currents, 

there are also conserved charges which arise from integrating the temporal component of 
 over 

the spatial domain. Since these charges follow from the fractal geometry of space-time, they are 

intrinsically topological in nature and characterized by   

  ~ 
0 3
d x  (A.13) 

It is instructive to note that (A.13) falls in line with the concept of space-time polarization 

induced by fractal topology [47-49]. 

Due to the manifestly neutral attributes of the scalar field embodied in (6.2), it is natural to 

assume that the Higgs-like condensate 
C

  is the sole state with zero topological charge that 

includes all gauge boson flavors. A logical corollary of this assumption is that, in general, 

particle-antiparticle pairs of gauge bosons or fermions carry non-zero topological charges. In 

light of this interpretation, conservation of the topological charge (A.13) requires that, in all 

decay or production channels of 
C

  shown in Tab. 2, a fraction of this charge becomes an 

“effective” polarization of the space-time manifold. This mechanism explains, at least in 

principle, why the Higgs-like condensate 
C

  couples to both SM gauge and fermion operators 

without carrying any gauge charge.  
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Decay 

 

c
  bb  

 

 

c
    

 

 

c
 WW ( l l  ) 

 

 

c
    

 

 

c
  ZZ ( 4l ) 

 

Production 

 

gg  tb  c
  

 

 

,W Z  c
  

 

 

gg  tt  C
  

 

    

 

Tab. 2: Decay and production channels of the Higgs-like condensate.  

The entries of this table are, respectively, l  lepton, t  top quark, b  bottom quark,  
neutrino,   tau lepton,   photon, g  gluon. 
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